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Abstract

This paper will give a short high-level overview on a
proposed system architecture on how a distributed b-
tree like data-structure could be built. This document
will be revised and updated depending on future work.

1 Introduction

When sorted access to data is needed in a centralized
environment, b-trees (balanced trees) and their similar
flavours are commonly used. We will now discuss, how
such a data-structure can be scaled to a distributed en-
vironment, to provide the same functionality as a cen-
tralized b-tree. The method discussed here does extend
the algorithms found on b-trees with additional levels to
get the desired distribution - one can say, that the data-
structure at the end is not a distributed b-tree, but solves
the same problems and gives the same interface to key-
value data:

• It allows access for exact match results (e.g.
lookup of a single key)

• It allows range queries (e.g. lookup of a range of
keys)

• It implements set(key, value), get(key), ge-
tRange(startKey, endKey), browse(startKey)and
similar interfaces to set and get data from the dis-
tributed data-structure.

2 Architecture

The proposed high-level architecture is designed to
scale from small systems (enterprise level) to very large
systems (Internet level). The main idea behind is to
reuse as much as possible already available techniques
and software, to lower the risk of building a com-
plete new system. This also has the advantage, if new
trends or new problem solving techniques come up, it
should be possible to incorporate them into this sys-
tem. Another point is, that for different requirements
(e.g. smaller systems, larger systems) some compo-
nents can be tuned for their specific environment, while
not changing other parts. Such a framework is shown
here (similar frameworks can be found in [5, 6])

key transformation node lookup data store replication

Figure 1: The different components for building a dis-
tributed data-structure

The next part of this article shows an overview how
everything plays together,

and the following goes a bit more in detail of each
component.

2.1 Overview

The main benefit of a distributed b-tree over a dis-
tributed hash-table is the sorted access to it’s data.
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Figure 2: Mapping of user key-space→ internal key-
space→ nodes

One idea would be to store the keys out-of-order (un-
structured) and only during query-processing the order
might be restored. But because the aspect of sorting
is the fundamental piece of the whole system, it makes
sense to sort the keys already at insertion time, so at all
time the whole data-structure is always in a sorted state
(structured).

Considering we have a user key-space[A,Z], this
range has to be partitioned and distributed among all
participating nodes1. Distribution can be done on key-
level, so each single key is managed by it’s own (e.g.
[4]), or we group some keys together into a group („key-
group”), and we then manage the whole group as one
single entity. Akey-groupis like a very small range
of the whole key-space and all keys inside such akey-
group a⊂ [A,Z] are ordered and are responsible for ex-
actly this assigned range, no otherkey-group b⊂ [A,Z]
contains a key which is also contained inkey-group a
(soa∩b∩ . . . = Ø). Eachkey-grouphas a unique label
(id, hash-key) to identify it2. As an overview how the
mapping of a user key to an internal key and the map-
ping to a node is done, take a look at Figure 2.

1At this point we don’t look at data replication. So if one node
goes away, all data this node was responsible are not accessible any-
more - the data is lost.

2During this paper, elements of the user key-space are written in
capital letters (e.g. A, B, C, ...) andkey-groupsare labeled with low-
ercase letters (e.g. a, b, c, ...)
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keys: user keys are mapped using a linear hash 
function (order preserving) to a fixed 
internal range [a,o] (normalizing)
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Figure 3: Transformation of keys to our internal key
space
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Figure 4: Range[a,o] is distributed among 4 nodes
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Figure 5: All subranges are linked to its successors and
predecessors
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Figure 6: User keys C, P, Z are stored on the corre-
sponding nodes

As the user of such a distributed data-structure wants
to have the full flexibility over the keys - he might use
alphanumeric, large range, small range, the keys can’t
just be used as received from the user. They must be
transformed to an internal key range (example in Figure
3).

Assuming we have a whole internal key-range of
[a,o], then each participating nodes will be responsi-
ble for one (or more) non-overlapping subranges of the
whole key-range (see Figure 4: e.g. node 1 consists of
subranges[a,c] and[ j,k]) and all nodes know where the
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successor and predecessor of their subranges is (Figure
5).

The transformation process depends on the size of the
system. For example on a small 4 node system, it would
be possible to have 4 largekey-groupsand just putting
a 1:1 relation ofkey-groupsand nodes, so each node is
solely responsible for one singlekey-group. On a large
system, there are much morekey-groupsand each only
contains a very small subset of the whole key-range.

To retain the original user key, on the node itself the
original key is stored (Figure 6)

The commonly used operations are described here:

2.1.1 Lookup / Storing of Key-Value Data

1. The user key is transformed to the internal key-
space using a linear hash-function.

2. The corresponding node for this internal key is
now searched using already proven P2P lookup
methods (P2P overlays, distributed hash tables
[16, 1, 11, 6, 7, 17]) or for smaller systems a sim-
ple lookup-table (static table, zeroconf implemen-
tation à la „Rendezvous” [2, 3, 9] or DNS like).

3. The corresponding node will receive the request
and will return/store the data.

2.1.2 Lookup / Browsing a Range

1. The lower end of user key is transformed to the
internal key-space using a linear hash-function.

2. The corresponding node is now looked-up.

3. The node will return all values in the requested
range.

4. The node will forward the remaining request,
which he can’t fulfill to his next node (successor)
and so on.

For optimization, range queries could also start from
both ends, so the lower-end and the higher-end are
executed in parallel, this will imply some kind of
transaction-id, so if the two split processed will meet
at one node (e.g. in the middle of the range) this node
will know, that he already processed this query and will
stop.

2.1.3 Node Insertion

1. The new node will send out a request to some
nodes (local nodes) and asks them if they could
migrate somekey-groupsto the new node. Perhaps
a better approach can be found, so the nodes who
are heavily overloaded will broadcast an S.O.S like
token, so new nodes will better find overloaded
nodes.

2. The new node will then register its successor and
predecessor (This can be done in the way b-link
trees register new tree nodes [10]).

3. And will then officially be the holder of thekey-
group.

2.1.4 Node Failure

1. If a node leaves the system (planned or unplanned)
the links to its successor and predecessor will be
broken.

2. It’s successor and predecessor will search each
other and will link together. The range of the lost
node is not available anymore (except there was a
data-replication mechanism in place), but the rest
of the distributed data-structure is still functional.

2.2 Key Transformation

The key idea behind it is, that our implementation will
have an already given key range for the internal key-
space. Depending on the technology used for the node-
lookup this can be a very large integer space. In case
we would use „Bamboo” [13] as the underlying node-
lookup infrastructure, the internal key space can be inte-
gers from 0 to 2160. At the same time the user key-space
could be phone numbers ranging from 1’000’000’000
to 9’999’999’999 and therefor need to be mapped to
our internal key space. Also note that not the whole
internal key-space needs to be used: In this example
the phone number range could be mapped 1:1 into our
internal key-space or better to an even smaller inter-
nal key-space, because otherwise eachkey-groupwould
only contain a single entry3.

This transformation needs to keep the ordering of
the user key-space, that’s why a linear hashing function

3E.g. the range 1’000’000’000 to 9’999’999’999 could be mapped
to 0 to 1’000. This way eachkey-groupwould hold up to 9’000’000
numbers and we can still scale up to 1’000 nodes.
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needs to be chosen. The hashing function does not need
to provide perfect ordering, in case the hashing func-
tion only provides a proximity result (e.g. it found, that
the requested key should be inkey-group abut in fact
is rather inb) the corresponding node which holds the
key-groupwill just forwards the request to it’s succes-
sor node, to query there. Of course this will have impact
on performance, so the better the hashing function, the
better the look-up performance4.

2.3 Node Lookup

When we got the internal key for the request, we now
have to look-up the corresponding host, which contains
the requested key. Allkey-groupsare distributed among
all participating nodes. As a general rule, if we have
severalkey-groupslocated at the same host, it is prefer-
able that thosekey-groupswill form a closed range of
the internal key-space (e.g. it is preferred to havekey-
groups a,b,c,d on one node and nota,k, r,z, this will
help preventing unnecessary jumps from one node to
the other during range queries).

As mentioned above depending on the size of the sys-
tem different approaches can be taken:

2.3.1 Smaller Systems

For smaller systems a static routing table can be put in
place, e.g:

Internal Key IP Address of Node

a 192.168.0.10
b 192.168.0.5
c 192.168.0.9
d 192.168.0.5

In a more dynamic environment, where constant
nodes are added/removed DNS like approaches can be
used or other local-network approaches like zeroconf
(also known as „Rendezvous”) [2, 3, 9] can be used,
where every node broadcasts his internal key on the net-
work, so others can easily find it. Zeroconf claims, that
their broadcast mechanism is resource limited and will
not overload the network with unnecessary broadcast
messages. Never-less this mechanism does only work

4This forwarding to successor node only needs to be done for
range-queries. For exact queries the hashing function will never do
any inaccuracy, because when the hashing function decides in which
key-groupto store the value, will be the same as when the user queries
for the same value for a look-up.

on the IP broadcast scope and is therefor limited to the a
local network, as broadcast messages are not forwarded
by a router.

2.3.2 Larger Systems

Obviously for a large scale system other mechanisms
need to be considered, even non decentralized ones
(E.g. for current Peer-to-Peer systems like [8]). In such
systems the look-up becomes the most critical part of
the system, as it is normally the slowest. Recently there
are many projects working on a distributed look-up ar-
chitecture (sometimes also called „Peer-to-Peer over-
lays” or „P2P overlays” for short) [16, 1, 11, 6, 5, 7,
17, 13]. Some of them could be used for our approach.

Depending on the underlying system we would
chose, additional optimizations can be implemented.
E.g. sometimes the the key space is not uniformly dis-
tributed, there exist some spots („data-spots”) with lot
of data and some with no data at all („data-holes”). In
such a sparse occupied key range, not allkey-groups
needs to be pre-allocated. They could be allocated as
soon as some data would fall into thiskey-group. This
way during an insertion of a new key, the system asks
the nearest node to also add this newkey-group(E.g.
if you already havekey-groups aandb on node 1, and
now a new key should be added, which would fall into
key-group cthe system will ask node 1, to also hold
key-group c.) This approach has two advantages:

1. The key-groupsdo not need to be pre-allocated,
this makes more efficient use of the nodes.

2. Allows better scalability, as newly added nodes
can efficiently be filled with new keys, without
having to migrate data from existing nodes.

To accomplish this feature, the underlying structure
needs to support that look-ups for non-existingkey-
groupswill be routed to the nearest existingkey-group
(e.g. if key-group aand f exist, and now a lookup for
key-group cis done, the underlying structure needs to
route this request to eithera or f . This only has to be
done for range-queries. For exact queries the system
can immediately return, as the key does not exist).

2.4 Data Store

Each node has his own storage, where all the keys of
this key-groupsare stored. For efficiency reasons each
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node only needs to have one single storage, and all key-
ranges can be stored on the same storage. As this stor-
age also needs support for sorted access to keys, a con-
ventional b-tree (e.g. Berkeley DB [15]) or highly con-
current b-link trees [12, 14, 10] can be used.

To make the system as flexible as possible and al-
lowing further extensions, each key-value pair can have
one or more additional meta-data information, which is
stored alongside the data. Such meta-data information
could be:

• Permission flags - so access to this data can be re-
stricted to some users

• Time and date, transaction-id of last change

• How many times the data item has been accessed
already

• Locks for transactions

• A flag if data is locally stored or stored on an other
machine of the network

• etc.

This meta-data is also used by the system itself for mon-
itoring, development and tuning purposes. Beside hav-
ing meta-data and counters on data level, also other
counters should be put in place on node level, e.g. the
amount of network traffic coming in or out, how many
queries the node already has answered, etc. This al-
lows to monitor the whole system during testing, to find
the best way to implement all it’s features. Later it can
also be used for self-maintenance, e.g. to detect a over-
loaded system, cache highly used data.

Each request coming to the node should have a
„unique” transaction-id, so if the whole query is split
in parallel and would reach a node twice - for whatever
reason - the node will know, that he already processed
this query and does not need to do any further action.
Those transaction-id do not need to be stored for a long
time, and can be removed after some time.

2.5 Replication

So far we have not discussed replication of data in such
a system, as there are several aspects and granular-
ity to look at, e.g. replication could be used as a ac-
tive/standby mechanism, so the replication is only used
in case the master is not available anymore, or in an
active/active manner, where writing/reading could be
done on either master or replica.
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Figure 7: Replication: A master and two replicas

2.5.1 Active/Standby

This is the most simple approach and would only give
the advantage of having a backup copy in case the mas-
ter is not available anymore. Additionally several repli-
cas could be used, to gain even higher redundancy in
case of failure. This method would not give any per-
formance advantage as having multiple data-sources for
the same data, so access to it’s data can’t be load-shared
among master and replicas.

But the advantage is, that this approach would not
need to block write requests until all replicas could be
updated, so this is rather simple to implement.

To include such mechanism into our distributed data-
structure, a simple approach can be used: The origi-
nal key-groupacts as master and in case of an inser-
tion/update of a key-value it will propagate this changes
also to it’s first replica, and this first replica will then
propagate the changes along to the second replica (e.g.
a→ a′ → a′′). Alternatively, the master could also up-
date all it’s replicas (e.ga→ a′ anda→ a′′). This could
be done synchronously (the master waits sending back
the response, until all replicas have been updated, and
will then return it’s status) or asynchronously (the mas-
ter will immediately return it’s status, and update it’s
replicas later).

The master and it’s replica send always some to-
kens to probe their availability5. Alternatively replica
2 could also only probe replica 1, in case of a hierarchi-
cal setup.

If the master is not available anymore, the replicas
will fail to send it’s probe tokens and the next avail-
able will be elected as master. If we have an underly-
ing node-lookup architecture as described in 2.3.2, the
node-lookup will automatically find the correct replica,
as he can’t find the original host and will just forward
the query to the next availablekey-group(e.g. if a

5Only the replicas have to send such a token, the master itself
never needs to send a token to its replica, as he will know their status
anyway, when an update fails.
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lookup for key-group afails, because node 1 is not
reachable, the underlying node-lookup architecture tries
to find the next availablekey-group. In Figure 7 this
would bekey-group dand this one is located on node 2
where also the first replicaa′ is located).

If the old master is available again, he will contact
the current active replica to update it’s value and will
then act again as normal master.

2.5.2 Active/Active

With Active/Standby we gain redundancy in case of a
node failure. With Active/Active we could additionally
gain load-sharing, although this method is more diffi-
cult to implement.

A drawback of the current approach is shown, if some
data which fall into the samekey-groupis „hot” and
needs to be accessed from several clients at the same
time. A potential bottleneck will occur, as only one sin-
gle node is responsible for this data. Here replication
could also help, in a way, that master and replicas allow
access to it’s data at the same time. Using this method
synchronisation and locking between master and replica
must be put in place, so all update requests must be
atomic, and during an write/update, no client is allowed
to access the same data for read/write. Depending on
the transactional need, there are possibilities to tune the
locking behavior, but never-less there is always some
amount of administrative cost to update all replicas.

Generally we can assume, writing to data will be
slower, as all replicas need to be updated and during
that time no other client is allowed to access the same
data. Each time before updating the data, the master
has to set locks on each replica and can then update the
values.

Reading from those data can then be in a load-
balanced manner. The node-lookup mechanism will
randomly (or any other load-balance mechanism can
be used) forward the queries to either the master or his
replicas.

Instead of using a separate key-space for all repli-
cas, the node-lookup will just add a fixed prefix to it’s
internalkey-group. This prefix has to be large, so the
chance to put the replica on the same node as the mas-
ter is minimized. Assume a prefix of 1000 and look at
the masterkey-groupwith id „35”. Doing a look-up of
„35” will return node 1. Askey-group„36” is probably
also on node 1, we now take our prefix of 1000 and will
then lookupkey-group„1035” this one is most probably
not on node 1 and on this node we could store our first

replica, the second will be on the node withkey-group
„2035” and so on.
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