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Abstract 2 Architecture

This paper will give a short high-level overview on 4 "€ Proposed high-level architecture is designed to
proposed system architecture on how a distributed sgale from small systems (enterprise level) to very large

tree like data-structure could be built. This documefYStéms (Internet level). The main idea behind is to
will be revised and updated depending on future worK€US€ &s much as possible already available techniques
and software, to lower the risk of building a com-

plete new system. This also has the advantage, if new

trends or new problem solving techniques come up, it
1 Introduction should be possible to incorporate them into this sys-

tem. Another point is, that for different requirements

When sorted access to data is needed in a centralife@- Smaller systems, larger systems) some compo-
environment, b-trees (balanced trees) and their similgnts can _be tuned for their specific enwronmept, while
flavours are commonly used. We will now discuss, holPt changing other parts. Such a framework is shown
such a data-structure can be scaled to a distributed Bt (Similar frameworks can be foundiin[[5, 6])
vironment, to provide the same functionality as a cen-

tralized b-tree. The method discussed here does ext D
the algorithms found on b-trees with additional levels 1 E >
get the desired distribution - one can say, that the da —./

structure at the end is not a distributed b-tree, but sol .
key transformation node lookup data store replication

the same problems and gives the same interface to key-
value data:

Figure 1: The different components for building a dis-

o It allows access for exact match results (e.fiPuted data-structure

lookup of a single key)
P 9 Y The next part of this article shows an overview how

i everything plays together,
o Itallows range queries (e.g. lookup of a range of 5 the following goes a bit more in detail of each
keys) component.

e It implements set(key, value) get(key) ge- .
tRange(startkey, endKeyprowse(startkey)and 2.1 Overview

similar interfaces to set and get data from the di$he main benefit of a distributed b-tree over a dis-
tributed data-structure. tributed hash-table is the sorted access to it's data.



user keys are mapped using a linear hash
function (order preserving) to a fixed
internal range [a,0] (normalizing)
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Figure 4: Rangéa, 0] is distributed among 4 nodes
One idea would be to store the keys out-of-order (un-

structured) and only during query-processing the order

might be restored. But because the aspect of sort

is the fundamental piece of the whole system, it mak | F—=-—r—-FH Far———H Frfao b -
sense to sort the keys already at insertion time, so at ’ , i .

time the whole data-structure is always ina sorted st¢ [~ | T )

(structured).

Considering we have a user key-spdéeZ], this Figure 5: All subranges are linked to its successors and
range has to be partitioned and distributed among gfedecessors

participating nod@ Distribution can be done on key-
level, so each single key is managed by it's own (e.g.
[4]), or we group some keys together into a grougey-
group’), and we then manage the whole group as ol '—HC"T)“—' e "—“5’7)“"—' HF
single entity. Akey-groupis like a very small range .

of the whole key-space and all keys inside sudteg —
group ac [A, Z] are ordered and are responsible for e
actly this assigned range, no othey-group bc [A, Z]
contains a key which is also containedkiey-group a Figure 6: User keys C, P, Z are stored on the corre-
(soanbn...=@). Eachkey-grouphas a unique label sponding nodes

(id, hash-key) to identify|ﬂ As an overview how the

mapping of a user key to an internal key and the map-as the user of such a distributed data-structure wants
ping to a node is done, take a look at Figye 2. to have the full flexibility over the keys - he might use
alphanumeric, large range, small range, the keys can't
just be used as received from the user. They must be
transformed to an internal key range (example in Figure
B.

LAt this point we don't look at data replication. So if one node Assuming we have a whole internal key-range of
goes away, all data this node was responsible are not accessible #8yo], then each participating nodes will be responsi-

more - the data is lost. ;
2During this paper, elements of the user key-space are Writtenk?Ie for one (Or more) non overlapplng SUbrangeS of the

capital letters (e.g. A, B, C, ...) arkety-groupsare labeled with low- whole key-range (S?e Figré 4: e.g. node 1 consists of
ercase letters (e.g. a, b, c, ...) subrange$a, c| and|j,k]) and all nodes know where the




successor and predecessor of their subranges is (Figule3 Node Insertion
B. 1
The transformation process depends on the size of the’
system. For example on a small 4 node system, it would
be possible to have 4 lardgey-groupsand just putting
a 1:1 relation okey-groupsand nodes, so each node is
solely responsible for one singkey-group On a large
system, there are much mdtey-groupsand each only
contains a very small subset of the whole key-range.

To retain the original user key, on the node itself theo_
original key is stored (Figuig 6)

The commonly used operations are described here:

The new node will send out a request to some
nodes (local nodes) and asks them if they could
migrate somdey-groupgo the new node. Perhaps

a better approach can be found, so the nodes who
are heavily overloaded will broadcast an S.0.S like
token, so new nodes will better find overloaded
nodes.

The new node will then register its successor and
predecessor (This can be done in the way b-link
trees register new tree nodes|[10]).

3. And will then officially be the holder of thkey-
2.1.1 Lookup / Storing of Key-Value Data group.

1. The user key is transformed to the internal key- .
space using a linear hash-function. 2.1.4 Node Failure

1. If anode leaves the system (planned or unplanned)

2. The corresponding node for this internal key is

now searched using already proven P2P lookup
methods (P2P overlays, distributed hash tables
[16,[1,[11]6[ ¥, 17]) or for smaller systems a sim- 2.
ple lookup-table (static table, zeroconf implemen-

the links to its successor and predecessor will be
broken.

It's successor and predecessor will search each
other and will link together. The range of the lost

tation a la ,Rendezvous[’[2] 3] 9] or DNS like). node is not available anymore (except there was a

data-replication mechanism in place), but the rest

3. The corresponding node will receive the request of the distributed data-structure is still functional.

and will return/store the data.

2.2 Key Transformation

2.1.2 Lookup / Browsing a Range
P g g The key idea behind it is, that our implementation will

1. The lower end of user key is transformed to tHeave an already given key range for the internal key-
internal key-space using a linear hash-function. space. Depending on the technology used for the node-
lookup this can be a very large integer space. In case

we would use ,Bamboo’l[13] as the underlying node-
lookup infrastructure, the internal key space can be inte-

3. The node will return all values in the requestegers from 0 to 20, At the same time the user key-space
range. could be phone numbers ranging from 1'000'000’000

to 9'999'999'999 and therefor need to be mapped to

4. The node will forward the remaining requestur internal key space. Also note that not the whole
which he can't fulfill to his next node (successornternal key-space needs to be used: In this example
and so on. the phone number range could be mapped 1:1 into our
internal key-space or better to an even smaller inter-

For optimization, range queries could also start froR! key-space, because otherwise eagfigroupvould
both ends, so the lower-end and the higher-end &y contain a single enffy

executed in parallel, this will imply some kind of This transformation needs to keep the ordering of
transaction-id, so if the two split processed will meéhe user key-space, that's why a linear hashing function

at one node (e.g. in the middle of the range) this nodes - = 0700040001000 to 9'999'999'999 could be mapped

will know, that he already processed this query and Wil o to 1°000. This way eackey-groupwould hold up to 9'000°000
stop. numbers and we can still scale up to 1'000 nodes.

2. The corresponding node is now looked-up.




needs to be chosen. The hashing function does not neadhe IP broadcast scope and is therefor limited to the a
to provide perfect ordering, in case the hashing funlocal network, as broadcast messages are not forwarded
tion only provides a proximity result (e.g. it found, thaby a router.

the requested key should bekery-group abut in fact

is rather inb_) t_he corresponding node Whic_h holds ths?)_2 Larger Systems

key-groupwill just forwards the request to it's succes-

sor node, to query there. Of course this will have impa@bviously for a large scale system other mechanisms
on performance, so the better the hashing function, theed to be considered, even non decentralized ones

better the look-up performa@e (E.g. for current Peer-to-Peer systems I[Ke [8]). In such
systems the look-up becomes the most critical part of
2.3 Node Lookup the system, as it is normally the slowest. Recently there

are many projects working on a distributed look-up ar-
When we got the internal key for the request, we noohitecture (sometimes also called ,Peer-to-Peer over-
have to look-up the corresponding host, which contailéys” or ,P2P overlays” for short) [16,] 1, 1L} 6| 5, 7,
the requested key. Akey-groupsre distributed among/(17,[13]. Some of them could be used for our approach.
all participating nodes. As a general rule, if we have Depending on the underlying system we would
severakey-groupdocated at the same host, it is prefeichose, additional optimizations can be implemented.
able that thosé&ey-groupswill form a closed range of E.g. sometimes the the key space is not uniformly dis-
the internal key-space (e.g. it is preferred to hkeg- tributed, there exist some spots (,data-spots”) with lot
groups ab,c,d on one node and nat k,r,z this will of data and some with no data at all (,data-holes”). In
help preventing unnecessary jumps from one nodestach a sparse occupied key range, notkayl-groups

the other during range queries). needs to be pre-allocated. They could be allocated as
As mentioned above depending on the size of the sgoon as some data would fall into thiey-group This
tem different approaches can be taken: way during an insertion of a new key, the system asks

the nearest node to also add this nesy-group(E.g.

if you already havekey-groups andb on node 1, and
now a new key should be added, which would fall into
For smaller systems a static routing table can be putkiey-group cthe system will ask node 1, to also hold

2.3.1 Smaller Systems

place, e.g: key-group ¢ This approach has two advantages:
] Internal Key\ IP Address of Nodq 1. Thekey-groupsdo not need to be pre-allocated,
a 192.168.0.10 this makes more efficient use of the nodes.
b 192.168.0.5 .
c 192 168.0.9 2. Allows better scalability, as newly added nodes
d 192.168.0.5 can efficiently be filled with new keys, without

having to migrate data from existing nodes.

In a more dynamic environment, where consta[}t

nodes are added/removed DNS like approaches can Beaccomplish this feature, the underlying s_tructure
used or other local-network approaches like zerocahfeds to support that look-ups for non-existikey-
roupswill be routed to the nearest existitkgy-group

(lso known as ,Rendezvous1)I[2] 5, 9] can be use 9. if key-group aand f exist, and now a lookup for

where every node broadcasts his internal key on the s d th derlvi truct ds t
work, so others can easily find it. Zeroconf claims, th py-group @s done, the underlying structure needs 1o
ute this request to eitharor f. This only has to be

their broadcast mechanism is resource limited and wifl : '
not overload the network with unnecessary broadcé5 ne for range-queries. For exact queries th? system
messages. Never-less this mechanism does only wh immediately return, as the key does not exist).

4This forwarding to successor node only needs to be done fgr
range-queries. Forgexact queries the hashir):g function will never1204 Data Store

any inaccuracy, because when the hashing function decides in which .

key-groupto store the value, will be the same as when the userquetrgQCh node has his own storage, where all the keys of
for the same value for a look-up. this key-groupsare stored. For efficiency reasons each



node only needs to have one single storage, and all k L, . .. . '_

ranges can be stored on the same storage. As this ¢ | 1 || —— o e e

age also needs support for sorted access to keys, a ( | T Hoe
ventional b-tree (e.g. Berkeley DB[115]) or highly con 1 NGl | I

current b-link trees [12, 14, 10] can be used.
To make the system as flexible as possible and al-

lowing further extensions, each key-value pair can have

one or more additional meta-data information, which is Figure 7: Replication: A master and two replicas

stored alongside the data. Such meta-data information

could be: )
2.5.1 Active/Standby

e Permission flags - so access to this data can be re- ) )
stricted to some users This is the most simple approach and would only give

the advantage of having a backup copy in case the mas-
e Time and date, transaction-id of last change  ter is not available anymore. Additionally several repli-
ot could be used, to gain even higher redundancy in
case of failure. This method would not give any per-
formance advantage as having multiple data-sources for
e Locks for transactions the same data, so access to it's data can’t be load-shared
mong master and replicas.
But the advantage is, that this approach would not
need to block write requests until all replicas could be
e efc. updated, so this is rather simple to implement.

To include such mechanism into our distributed data-

This meta-data is also used by the system itself formoﬁfucture, a simple approach can be used: The origi-

itoring, development and tuning purposes. Beside hf?’Yél key-groupacts as master and in case of an inser-

ing meta-data and counters on data level, also otgar
S

e How many times the data item has been acces
already

. : a
e Aflag if datais locally stored or stored on an other
machine of the network

hould b in ol de level n/update of a key-value it will propagate this changes
counters should be put in place on node level, e.g. o to it's first replica, and this first replica will then

amount of network traffic coming in or out, how man .
. ’ . Propagate the changes along to the second replica (e.qg.
gueries the node already has answered, etc. Thls¥J I-p g g g plica (.g

. ) . >d— a — a’). Alternatively, the master could also up-
lows to monitor the whole system during testing, to fin

he b ol lits f L ) ate all it's replicas (e.g — & anda — &”). This could
the best way to implement all it's features. Later it cgly, o0 synchronously (the master waits sending back

?Isg bde used for sel;—mr?mrt]tl-:‘nancs, de.g. to detect a OVRE resonse, until all replicas have been updated, and
oaded system, cache highly used data. will then return it's status) or asynchronously (the mas-

E_ach” request coming to the node ShOUId_ have_teq will immediately return it's status, and update it's
,unique” transaction-id, so if the whole query is splq;elolicas later)

in parallel and would reach a node twice - for whatever - .
The master and it's replica send always some to-

reason - the node will know, that he already proces gns to probe their availabil[ﬂ/ Alternatively replica

this query and 'doe_s not need to do any further aCt'of'could also only probe replica 1, in case of a hierarchi-
Those transaction-id do not need to be stored for a Ioggl setup

time, and can be removed after some time. . . .
If the master is not available anymore, the replicas
o will fail to send it's probe tokens and the next avail-
2.5 Replication able will be elected as master. If we have an underly-

So far we have not discussed replication of data in sutly node-looku_p arch|tect_ure as descrlbe@.&z_, the
a system, as there are several aspects and granmgp[e-lookup will automatically find the correct replica,
ity to look at, e.g. replication could be used as a a! s he can'’t find the original host and will just forward
tive/standby mechanism, so the replication is only usHif duery to the next availabkey-group(e.g. if a

in case the master is not available anymore, or in dHSOnIy the replicas have to send such a token, the master itself

aCtiVG/aCtiYe manner, Where- writing/reading could Bgyer needs to send a token to its replica, as he will know their status
done on either master or replica. anyway, when an update fails.




lookup for key-group afails, because node 1 is noteplica, the second will be on the node witby-group
reachable, the underlying node-lookup architecture trig®35” and so on.
to find the next availabl&ey-group In Figure[T this
would bekey-group dand this one is located on node 2
where also the first replical is located). References
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